Latest Products

Mount Semeru

Order Detail


From Wikipedia, the free encyclopedia
Semeru in 1985.
Highest point
Elevation 3,676 m (12,060 ft)
Prominence 3,676 m (12,060 ft) 
Ranked 45th
Isolation 391 kilometres (243 mi)
Listing Ultra
Coordinates 8°6′28.8″S 112°55′12.0″ECoordinates: 8°6′28.8″S 112°55′12.0″E
Semeru is located in Java
Mountain type Stratovolcano
Last eruption 1967 to present
First ascent Unknown
Easiest route Hike
Semeru volcano, July 2004
Semeru, or Mount Semeru (Indonesian: Gunung Semeru), is an active volcano located in East Java, Indonesia. It is the highest mountain on the island of Java. This stratovolcano is also known as Mahameru, meaning 'The Great Mountain.[1] The name derived from the Hindu-Buddhist mythical mountain of Meru or Sumeru, the abode of gods.


Known also as Mahameru (The Great Mountain), it is very steep rising abruptly above the coastal plains of eastern Java. Maars containing crater lakes have formed along a line through the summit of the volcano. It was formed south of the overlapping Ajek-ajek and Jambagan calderas.[1] Semeru lies at the south end of the Tengger Volcanic Complex.

Eruptive history

Semeru's eruptive history is extensive. Since 1818, at least 55 eruptions have been recorded (10 of which resulted in fatalities) consisting of both lava flows and pyroclastic flows. All historical eruptions have had a VEI of 2 or 3.[1]
Semeru has been in a state of near-constant eruption from 1967 to the present. At times, small eruptions happen every 20 minutes or so.[2]
Semeru is regularly climbed by tourists, usually starting from the village of Ranu Pane to the north, but though non-technical it can be dangerous. Soe Hok Gie, an Indonesian political activist of the 1960s died in 1969 from inhaling poisonous gases while hiking on Mount Semeru.[3]


Semeru is named from Sumeru, the central world-mountain in Buddhist cosmology and by extension Hinduism. As stated in legend, it was transplanted from India; the tale is recorded in the 15th-century East Javanese work Tantu Pagelaran. It was originally placed in the western part of the island, but that caused the island to tip, so it was moved eastward. On that journey, parts kept coming off the lower rim, forming the mountains Lawu, Wilis, Kelut, Kawi, Arjuno and Welirang. The damage thus caused to the foot of the mountain caused it to shake, and the top came off and created Penanggungan as well.[4] Indonesian Hindus also hold a belief that the mountain is the abode of Shiva in Java.

Plantation problems

Foreign invasive plants

In 2014, there are as many as 25 non-native plants in Mount Semeru National Park, which threaten the endemic local plants. The foreign plants were imported by a Dutch botanist named Van Steenis, in the colonial era. They include Foeniculum vulgare mill, Verbena brasiliensis, chromolaena odorata, and Salvinia molesta.[5]

Vegetable plantations

Mud erosion from surrounding vegetable plantations are also making problem of silting of Ranu Pane Lake, which the lake becomes smaller and shallower. Research predicted the lake will disappear in about 2025, except the kind of vegetables plantation is replaced with more ecological plantations.[6]

See also


  • "Semeru: Summary". Global Volcanism Program. Smithsonian Institution. Cite error: Invalid <ref> tag; name "gvp" defined multiple times with different content (see the help page).

  • for March 2009 eruption

  • "Birth of Soe Hok Gie". Viva News. December 17, 2008.

  • Soekmono, Dr R. (1973). Pengantar Sejarah Kebudayaan Indonesia 2. Yogyakarta, Indonesia: Penerbit Kanisius. p. 119. ISBN 979-413-290-X.

  • Eko Widianto (October 25, 2014). "Foreign Plantations Invade Mt Semeru".

    1. David Priyasidharta (December 15, 2014). "Ranu Pane Lake Estimated to Disappear in 10 Years".


    External links

    Mount Rinjani

    Order Detail

    Mount Rinjani

    From Wikipedia, the free encyclopedia
    Mount Rinjani
    Mount Barujari
    Rinjani 1994.jpg
    1995 eruption
    Highest point
    Elevation 3,726 m (12,224 ft) [1]
    Prominence 3,726 m (12,224 ft) Ranked 38th
    Isolation 1,602 kilometres (995 mi)
    Listing Ultra
    Coordinates 8.414414°S 116.459767°E[1]
    Native name Gunung Rinjani
    Mount Rinjani is located in Lombok
    Mount Rinjani
    Mount Rinjani
    Location of Mount Rinjani
    Location Gunung Rinjani National Park
    Lombok, Indonesia
    Parent range Lesser Sunda Islands
    Age of rock Late Mesozoic
    Mountain type Somma
    Volcanic arc Sunda Arc
    Last eruption 14:45, 27 September 2016 (WITA)
    Easiest route Senaru
    Normal route Sembalun
    Access Restricted
    Mount Rinjani or Gunung Rinjani is an active volcano in Indonesia on the island of Lombok. Administratively the mountain is in the Regency of North Lombok, West Nusa Tenggara (Indonesian: Nusa Tenggara Barat, NTB). It rises to 3,726 metres (12,224 ft), making it the second highest volcano in Indonesia.[2]
    On the top of the volcano is a 6-by-8.5-kilometre (3.7 by 5.3 mi) caldera, which is filled partially by the crater lake known as Segara Anak or Anak Laut (Child of the Sea), due to the color of its water, as blue as the sea (laut).[3] This lake is approximately 2,000 metres (6,600 ft) above sea level and estimated to be about 200 metres (660 ft) deep;[4] the caldera also contains hot springs. Sasak tribe and Hindu people assume the lake and the mount are sacred and some religious activities are occasionally done in the two areas.[3] On 27 September 2016 14:45 WITA Rinjani erupted.[5][6][7]



    Lombok is one of the Lesser Sunda Islands, a small archipelago which, from west to east, consists of Bali, Lombok, Sumbawa, Flores, Sumba and the Timor islands; all are located at the edge of the Australian continental shelf. Volcanoes in the area are formed due to the action of oceanic crusts and the movement of the shelf itself.[8] Rinjani is one of at least 129 active volcanoes in Indonesia, four of which belong to the volcanoes of the Sunda Arc trench system forming part of the Pacific Ring of Fire – a section of fault lines stretching from the Western Hemisphere through Japan and South East Asia.
    The islands of Lombok and Sumbawa lie in the central portion of the Sunda Arc. The Sunda Arc is home to some of the world's most dangerous and explosive volcanoes. The eruption of nearby Mount Tambora on Sumbawa is known for the most violent eruption in recorded history on 15 April 1815, with a scale 7 on the VEI.[9]
    The highlands are forest clad and mostly undeveloped. The lowlands are highly cultivated. Rice, soybeans, coffee, tobacco, cotton, cinnamon, cacao, cloves, cassava, corn, coconuts, copra, bananas and vanilla are the major crops grown in the fertile soils of the island. The slopes are populated by the indigenous Sasak population. There are also some basic tourist related activities established on Rinjani primarily in or about the village of Senaru.
    Rinjani volcano on the island of Lombok rises to 3,726 metres (12,224 ft), second in height among Indonesian volcanoes only to Sumatra's Kerinci volcano. Rinjani has a steep-sided conical profile when viewed from the east, but the western side of the compound volcano is truncated by the 6 x 8.5 km, oval-shaped Segara Anak caldera. The western half of the caldera contains a 230-metre-deep lake whose crescentic form results from growth of the post-caldera cone Barujari at the eastern end of the caldera.[10]
    Color infrared view of Rinjani Volcano on Lombok Island, May 1992. Lombok Strait and Bali are on the top, Alas Strait and Sumbawa Island are on the bottom.

    Geologic summary

    On the basis of plate tectonics theory, Rinjani is one of the series of volcanoes built in the Lesser Sunda Islands due to the subduction of Indo-Australian oceanic crust beneath the Lesser Sunda Islands, and it is interpreted that the source of melted magma is about 165–200 kilometres (103–124 mi) depth.[11][12]
    The geology and tectonic setting of Lombok (and nearby Sumbawa) are described as being in the central portion of the Sunda Arc.[13] The oldest exposed rocks are Miocene, suggesting that subduction and volcanism began considerably later than in Java and Sumatra to the west, where there are abundant volcanic and intrusive rocks of Late Mesozoic age. The islands are located on the eastern edge of the Sunda shelf, in a zone where crustal thickness is apparently rapidly diminishing, from west to east.[14]
    The seismic velocity structure of the crust in this region is transitional between typical oceanic and continental profiles and the Mohorovičić discontinuity (Moho) appears to lie at about 20 kilometres (12 mi) depth.[15] These factors tend to suggest that there has been limited opportunity for crustal contamination of magmas erupted on the islands of Lombok and Sumbawa. In addition, these islands lie to the west of those parts of the eastern-most Sunda and west Banda arcs where collision with the Australian plate is apparently progressing.[16]
    The volcano of Rinjani is 165 to 190 kilometres (103–118 mi) above the Benioff Zone.[17] There is a marked offset in the line of active volcanoes between the most easterly Sumbawa volcano (Sangeang Api) and the line of active volcanoes in Flores. This suggests that a major transcurrent fault cut across the arc between Sumbawa Island and Flores. This is considered to be a feature representing a major tectonic discontinuity between the east and west Sunda Arcs (the Sumba Fracture).[18] Further, a marked absence of shallow and intermediate earthquake activity in the region to the south of Lombok and Sumbawa is a feature interpreted to represent a marked break in the Sunda Arc Zone.[18] Faulting and folding caused strong deformation in the eastern part of Lombok Basin and is characterized by block faulting, shale diapirs and mud volcano.[19][20]


    Map of volcanoes in Indonesia
    The Rinjani caldera forming eruption is thought to have occurred in the 13th century. Dated to "late spring or summer of 1257," this 1257 Samalas eruption is now considered the likely source of high concentrations of sulfur found in widely dispersed ice core samples and may have been "the most powerful volcanic blast since humans learned to write."[21][22] The massive eruption may have triggered an episode of global cooling and failed harvests.[23]
    Eruption rate, eruption sites, eruption type and magma composition have changed during the last 10,000 years before the caldera forming eruption.[24] The eruptions of 1994 and 1995 have presented at Gunung Baru (or 'New Mountain' – approximately 2,300 metres (7,500 ft) above sea level) in the center of this caldera and lava flows from subsequent eruptions have entered the lake. This cone has since been renamed Gunung Barujari (or 'Gunung Baru Jari' in Indonesian).
    The first historical eruption occurred in September 1847. The most recent eruption of Mount Rinjani was in May 2010 and the most recent significant eruptions occurred during a spate of activity from 1994 to 1995 which resulted in the further development of Gunung Barujari. Historical eruptions at Rinjani dating back to 1847 have been restricted to Barujari cone and the Rombongan dome (in 1944) and consist of moderate explosive activity and occasional lava flows that have entered Segara Anak lake.[25] The eruptive history of Rinjani prior to 1847 is not available as the island of Lombok is in a location that remained very remote to the record keeping of the era.
    On 3 November 1994, a cold lahar (volcanic mudflow) from the summit area of Rinjani volcano traveled down the Kokok Jenggak River killing thirty people from the village of Aikmel who were caught by surprise when collecting water from the river in the path of the flow.
    In connection with the eruption of the cone Gunung Barujari the status for Gunung Rinjani has been raised from Normal (VEI Level 1) to 'be vigilant' (VEI Level 2) since May 2, 2009 . In May 2010 Gunung Rinjani was placed in the standby status by Center for Volcanology & Geological Hazard Mitigation, Indonesia with a recommendation that there be no activity within a radius of 4 kilometres (2.5 mi) from the eruption at Gunung Barujari.[26]

    Volcanic composition

    View from the summit of Gunung Rinjani
    In Lombok, Rinjani volcano lies approximately 300 kilometres (190 mi) north of the Sunda Trench (also known as Java trench[27]) and is situated about 170 kilometres (110 mi) above the active north dipping Benioff zone.[28] Based on the composition of andesites which have very low Ni concentrations and low Mg/Mg+Fe It is suggested that the Rinjani suite is of mantle origin, but that all the andesites and dacites as well as many of the basalts have probably been modified by fractional crystallization processes.[29] It is concluded that the Rinjani calc-alkaline suite, which in many respects is typical of many suites erupted by circum-pacific volcanoes, probably originated by partial melting of the peridotite mantle-wedge overlying the active Benioff Zone beneath Lombok Island.[20][29][30] The Pleistocene-Recent calcalkaline suite from the active volcano, Rinjani is composed of a diverse range of lavas. These include: ankaramite, high-Al basalt, andesite, high-K andesite and dacite. Sr-isotopic and geochemical constraints suggest that this suite was derived from the sub-arc mantle. Geochemical models suggest that fractional crystallization is an important process in the suite's differentiation, although the series: ankaramite-high-Al basalt-andesite-dacite does not represent a continuously evolving spectrum of liquids.[31]

    Recent activity

    Rinjani erupted three times on May 22, 2010 with activity continuing until early on May 23. According to the volcano's official monitoring agency, ash from Mount Rinjani was reported as rising up to two km into the atmosphere and damaged crops. The volcano did not threaten villagers at that time. Lava flowed into the caldera lake, pushing its temperature up from 21 to 35 °C (70 to 95 °F), while smoke spread 12 kilometres (7.5 mi).[32]
    In February 2010 observers at the Gunung Rinjani Observation Post located 1.25 km (4,100 ft) northeast of G. Rinjani saw one whitish-colored plume that rose 100 metres (328 ft) from the volcano. Dense whitish plumes (and possibly brown) rose 500 to 900 m (1,600–3,000 ft) in March 2010 on 26 occasions and as high as 1,500 m (4,900 ft) in April 2010 on 41 occasions. Plumes seen on 1 and 2 May 2010 were "chocolate" in color and rose a maximum height of 1,600 metres (5,200 ft). From February 2010 through April 2010 seismicity decreased, although the maximum amplitude of earthquakes increased. CVGHM (Center of Volcanology and Geological Hazard Mitigation) also noted that ash eruptions and ejected incandescent material fell within Rinjani caldera, but some ash was blown out of the caldera.[33]
    The activity in early 2010 centred about Gunung Barujari, a post-caldera cone that lies within the Rinjani's caldera lake of Segara Anak. The Volcanological Survey of Indonesia reported on 1 May 2010, that a column of smoke was observed rising from G. Rinjani "issuing eruptions 1300–1600 metres tall with thick brown color and strong pressure". Their report Evaluasi Kegiatan G. Rinjani of 4 May also stated that on 1 May 2010 at 10:00 four events of Explosive Earthquake were recorded with a maximum amplitude of 6–53 mm and 110 seconds long earthquake, earthquake tremor events with a maximum amplitude of 1 mm and 55 second long duration, 15 Local Tectonic earthquake events and two events of tectonic earthquake.
    The Volcanic Explosivity Index (VEI) Alert Level was raised to 2 (on a scale of 1–4) on 2 May 2010.[26] Level 1 is "Normal" and Level 2 is "Advisory" with an Aviation Alert color of Yellow-Advisory.[34] Based on analysis of satellite imagery, the Darwin VAAC (Volcanic Ash Advisory Center)[35] reported that on 5 May a possible ash plume from Rinjani rose to an altitude of 5.5 kilometres (3.4 mi) a.s.l. and drifted 150 kilometres (93 mi) NW. The plume was not seen in imagery about six hours later. CVGHM (Center of Volcanology and Geological Hazard Mitigation) advised the VAAC that intermittent activity could produce ash plumes to 1.5 km (4,900 ft) above the caldera.[36]
    On 27 April 2009 Gunung Barujari became active, with activity continuing through to May 2009. The mountain was closed at that time as the eruptions intensified with plumes of smoke and ash as high as 8,000 m (26,000 ft).[37] A Volcanic Explosivity Index (VEI):2 rating was issued for the activity between 2 May 2009 and 20 December 2009. The activity during this period was described as having the characteristics of central vent eruption, flank (excentric) vent, explosive eruption and lava flow(s).[38][39]
    On 31 October 2015, Mount Rinjani started erupting again.[40]

    Previous activity

    Segara Anak, the volcanic crater on the summit of Rinjani.
    On 27 September 2004 a DVGHM (Directorate of Volcanology and Geological Hazard Mitigation) report noted the decision to increase Rinjani's hazard status to Volcanic Explosivity Index (VEI) Alert Level 2 (Yellow). During the last third of 2004, the number of volcanic and tectonic earthquakes had increased. Their increase followed a rise in the number of tectonic earthquakes that began 18 August 2004. Tremor registered on 23, 24, 25, and 26 September 2004. Tremor amplitudes ranged between 12 and 13.5 mm, and the duration of the tremor stood between 94 and 290 seconds.[41]
    In September 1995 an aviation report was issued concerning an unconfirmed ash cloud from Rinjani. A NOTAM about volcanic activity from Rinjani was issued by the Bali Flight Information Region on the morning of 12 September. An ash cloud was reportedly drifting to the south west with the cloud top around 4 km (2.5 mi) altitude.[42]
    On 3 November 1994, a cold lahar (volcanic mudflow) from the summit area of Rinjani volcano traveled down the Kokok Jenggak River killing thirty people from the village of Aikmel who were caught by surprise when collecting water from the river in the path of the flow. One person remained missing as of 9 November 1994. No damage to the village was reported. Local volcanologists noted that additional lahars could be triggered by heavy rainfall.[43]
    During 4 June 1994 – January 1995 the DVGHM (Directorate of Volcanology and Geological Hazard Mitigation) noted that explosions occurred on Rinjani. Those explosions came from the Barujari volcano.[41] At 05:30 on 1 October 2004 Rinjani erupted. The eruption caused authorities to immediately raise the hazard status to Alert Level 3 (Orange). Details regarding the initial 1 October 2004 eruption are indistinct. During 2–5 October 2004 explosions sent ash columns 300 to 800 m (980–2,620 ft) above the summit. Gray, thick ash columns drifted to the north and detonation sounds accompanied every explosion. Successive explosions occurred at intervals of 5 to 160 minutes. Explosions vented on the north eastern slope of Barujari volcano. Some material also vented from Barujari's peak and fell down around its edifice. A press report in the Jakarta Post indicated that evacuations were not considered necessary.[44] A Volcanic Explosivity Index (VEI):2 rating was issued for the activity between 1 May 2004 through to (on or after) 5 October 2004.[38]
    Between 3 June 1994 and 21 November 1994 records of Rinjani's eruptive history indicate activity accorded Volcanic Explosivity Index (VEI) with a rating of 3(?) with the area of activity described as Gunung Barujari. Eruptive characteristics documented for the events of that time are described as, central vent eruption with an explosive eruption, with pyroclastic flow(s), lava flow(s), fatalities and mudflow(s) (lahars).[45]
    In May 1994 a glow was noticed on the crater floor of Barujari cone, which at this time had undergone no significant activity since August 1966. A portable seismograph (PS-2) and telemetry seismograph (Teledyne) were put into operation on 27 May and 9 June, respectively. One volcanic earthquake event/day was recorded on 27, 28, 30, and 31 May. After 4 June, however, volcanic tremor with a maximum amplitude of 35 mm was recorded, presumably associated with the upward movement of magma. At 0200 on 3 June1994, Barujari cone began erupting by sending an ash plume 500 m (1,600 ft) high. One 8 June 1994 press report described emission of "smoldering lava" and "thick smoke," as well as ashfall in nearby villages from an ash cloud rising 1,500 m (4,900 ft) above the summit. Between 3 and 10 June 1994, up to 172 explosions could be heard each day from the Sembalun Lawang volcano observatory (about 15 km (9.3 mi) NE). During this period, seismic data indicated a dramatic increase in the number of explosions per day, from 68 to 18,720. Eruptions were continuous at least through 19 June 1994, with maximum ash plume heights of 2,000 m (6,600 ft) on 9–11 June 1994.[46]
    Hiking Post on Tengengean, 1500 m height on Mt. Rinjani
    Between 28 March 1966 and 8 August 1966 records of Rinjani's eruptive history indicate activity accorded a Volcanic Explosivity Index (VEI) rating of 1. Lava volume of 6.6 million cubic metres (230×106 cu ft) and a tephra volume of 20,000 cubic metres (710,000 cu ft) was recorded. The area of activity described was the east side of Barujari at 2,250 m (7,380 ft). Eruptive characteristics were documented as a central vent eruption, explosive eruption and lava flow(s).[47]
    In December 1944 Rinjani appears to have had a significant event. Between December 25, 1944 and 1(?) January 1945 eruptive activity is rated 2 on the Volcanic Explosivity Index (VEI) The event has been listed in the historical records of the Global Volcanism Program indicating a lava volume: of 74×106 m3 (2.6×109 cu ft) occurring in an area of activity on the north west flank of Barujari (Rombongan). The eruptive characteristics are described a central vent eruption on the flank (excentric) vent, a crater lake eruption, explosive eruption, lava flow(s) and a lava dome extrusion with associated damage to land, property.[48]

    Monitoring program

    Gunung Rinjani Observation Post Rinjani Sembalun is located in the village of Lawang, Sub Sembalun 12.5 km (4000 feet) northeast of G. Rinjani) in the Regency of East Lombok. Observers at this post monitor G.Rinjani, G.Barujari/G.Tenga within the Segara Anak Caldera.[49]

    Rinjani National Park

    View of Segara Anak from the crater rim
    The volcano and the caldera are protected by the Gunung Rinjani National Park established in 1997. Tourism is increasingly popular[50] with trekkers able to visit the rim, make their way into the caldera or even to make the more arduous climb to the highest point;[51] fatalities, however, are not unheard of.[52][53] In July 2009 the summit route was closed due to volcanic activity at that time and subsequently reopened when the activity decreased. During early 2010 up to and including May 2010 access to Rinjani was at times again restricted due to volcanic activity.
    The park is popular for mountain climbs and trekking and represents an important nature reserve and water catchement area. The park is officially 41,330 hectares (159.6 sq mi) within the park boundaries and includes a further 66,000 hectares (250 sq mi) of protected forest outside. The mountain and its satellites form the Mount Rinjani National Park (Taman Nasional Gunung Rinjani). In 2008, the Indonesian government proposed to UNESCO that Mount Rinjani be one of the world's official geoparks. If this was approved by UNESCO, Mount Rinjani would become the first such geological park in Indonesia.
    It has been claimed that the preliminary documentation required for UNESCO registration has not received sufficient support from the Nusa Teggara Barat government offices. Among the requirements to become a geo-park sufficient information must be supplied to show that the location has sufficient and appropriate management, information services, access to educational instruction to facilitate "knowledge-based geotourism", the implementation of a sustainable regional economy, biodiversity conservation, and to have established public access to the park area.[54][55][56][57]
    Mount Rinjani has obtained the World Legacy Award from Conservation International and Traveller (2004), and was a finalist for Tourism for Tomorrow Awards (2005 and 2008) from the World Travel Tourism Council (WTTC).
    Rinjani owl was found in 2003 and after 10 years evidence research is recognized as a new endemic owl (before it, in the 19th century is recognized as Mollucas owl).[58]

    Eruption history of Rinjani

    VEI Date Start-Stop Lava Volume Tephra Volume Area of Activity Eruptive Characteristics Note[59] Refs
     ? 2016 September 27 14:45 WITA

    Gunung Barujari Ash ejected to atmosphere[5][6][7]
     ? 2015 October 31

    Gunung Barujari Ash plumes lava flows Strombolian explosions
    2 2010 February
    2010 May 23

    Gunung Barujari Ash plumes ejected incandescent material
    fell within Rinjani caldera

    some ash was blown out of the caldera
    possible ash plume rose to an altitude of 5.5 km
    further ash plumes to 2km, lava flows, crop damage
    SI / USGS Weekly Volcanic Activity Report-Rinjani[61]
    PVMGV-Evaluasi Kegiatan G. Rinjani[36][62] ABC Asia Pacific News Service 24 may2010[32]
    2 2009 May 2
    2009 Dec 20 (?)

    NE flank of Gunung Barujari Central vent eruption Flank (excentric) vent Explosive eruption Lava flow(s) Historical Records
    2 2004 Oct 1
    2004 Oct 5
    (on or after)

    Summit and NE flank of Gunung Barujari Central vent eruption Central vent eruption Flank (excentric) vent Explosive eruption Historical Records
    0 1995 Sep 12

    Explosive eruption (?) Historical Records
    Eruption "Uncertain"
    3? 1994 Jun 3
    1994 Nov 2

    Gunung Barujari Central vent eruption Explosive eruption Pyroclastic flow(s) Lava flow(s) Fatalities Mudflow(s) (lahars) Historical Records
    (VEI): 3?
    1 1966 Mar 28
    1966 Aug 8
    6.6×10⁶ m³ 10⁴ m³ Eastern side of Gunung Barujari (2250 m) Central vent eruption Explosive eruption Lava flow(s) (?) Historical Records
    0? 1965 Sep
    (end) Unknown

    Gunung Barujari Flank (excentric) vent eruption
    Lava flow(s) (?)
    Historical Records
    0? 1953 Oct 15
    ± 45 days
    (end) Unknown

    Gunung Barujari Central vent eruption Historical Records
    (VEI): 0?
    0? 1949
    1950 (months uncertain)

    NW flank of Gunung Barujari Central vent eruption Explosive eruption Lava flow(s) Historical Records
    2 1944 Dec 25
    1945 Jan 1 (?)
    7.4×10⁷ m³
    NW flank of Barujari (Rombongan) Central vent eruption Flank (excentric) vent Crater lake eruption Explosive eruption Lava flow(s) Lava dome extrusion Damage (land, property, etc.) Historical Records
    0 1941 May 30
    (end) Unknown

    Rinjani summit Central vent eruption Historical Records
    Eruption is Uncertain
    2 1915 Nov 4
    (end) Unknown

    Gunung Barujari
    (Segara Munjar)
    Central vent eruption Explosive eruption Historical Records
    2 1909 Nov 30
    1909 Dec 2

    Gunung Barujari Central vent eruption Explosive eruption
    Mudflow(s) (lahars)
    Historical Records
    1 1906 Apr 29
    (end) Unknown

    Gunung Barujari Central vent eruption Explosive eruption Historical Records
    2 1901 Jun 1
    1901 Jun 2

    Gunung Barujari Central vent eruption Explosive eruption Historical Records
    2 1900 Nov 30
    1900 Dec 2

    Gunung Barujari Central vent eruption Explosive eruption Lava flow(s) Historical Records
    2 1884 Aug 8
    1884 Aug 10
    ± 1 day

    Gunung Barujari Central vent eruption Explosive eruption Historical Records
    2 1847 Sep 10
    1847 Sep 12

    Gunung Barujari Central vent eruption Explosive eruption Historical Records
    7 1257

    Gunung Samalas, the former twin peak of Gunung Rinjani, destroyed after the explosion. Caldera-forming eruption; possible trigger of the Little Ice Age. The largest eruption in the past of 2000 years. Based on Arctic deposit study[63][64] [22][65][66]
    4 2,550 ± 50 B.P.
    0.4 km3
    Producing the Rinjani Pumice and a sub-plinian pumice fall deposit 14C


    In December 2010, a photo of eruption of Rinjani won 2010 National Geographic Photography Contest.[67] The photo, taken by Singaporean photographer Aaron Lim Boon Teck won the contest, and described by the judge as "best represented the craft of photography. Not only is the light subtle and beautiful, and not only is it a lovely scene, but there's a volcanic eruption going on in the background."

    See also


  • "Rinjani". Global Volcanism Program. Smithsonian Institution. Retrieved 2010-03-10.

  • "Information – Rinjani". Global Vulcanism Program USGS-Smithsonian. Retrieved 13 Sep 2010.

  • "Datang dan Nikmatilah Danau di Puncak Rinjani|". January 18, 2014.

  • Langston-Able, Nick (2007). Playing with Fire. United Kingdom: Freak Ash Books. p. 184. ISBN 9780955340345.

  • "Indonesia Evacuates Tourists After Mount Barujari Eruption". Fox News. AP. 28 September 2016. Retrieved 29 September 2016.

  • "Gunung Barujari meletus pada Selasa (27/9/2016) pukul 14.45 WITA atau 13.45 WIB;from google (gunung rinjani meletus 27 september wita) result 1".

  • "Mount Barujari, a sub-volcano of Mount Rinjani in Lombok, West Nusa Tenggara (NTB), erupted at around 2:45 p.m. local time on Tuesday;from google (mount barujari erupt 27 september local time) result 1".

  • H. A. Brouwer (July 1939). "Exploration in the Lesser Sunda Islands". The Geographical Journal. 94 (1): 1–10. doi:10.2307/1788584. JSTOR 1788584.

  • Stothers, Richard B. (1984). "The Great Tambora Eruption in 1815 and Its Aftermath". Science. 224 (4654): 1191–1198. Bibcode:1984Sci...224.1191S. doi:10.1126/science.224.4654.1191. PMID 17819476.

  • "RINJANI Lombok Island (Indonesia) 8.42°S, 116.47°E; summit elev. 3726 metres Global Vulcanism Program USGS-Smithsosian". 28 April – 4 May 2010. Retrieved 2010-05-09.

  • Hamilton, W.B., 1979, Tectonic Map of the Indonesian region: USGS Map I‑875‑D, 1:5,000,000.

  • Hamilton, W.B., 1979, Tectonics of the Indonesian region: USGS Prof. Paper 1078, 345 p.+ map.

  • (qf. Foden and Varne 1981b)

  • (Curray et al, 1977)

  • (Curray et al. 1977)

  • (qf. Foden and Varne 1981b).

  • (Hamilton 1979)

  • Hedervari (1978) and Ritsema (1954)

  • (Prasetyo 1992). Abbot and Chamalaun (1978)

  • Wikibooks:The Geology of Indonesia/The lesser Sunda Islands

  • Siegfried, Tom (2012). "Mystery Volcano's Name Revealed Despite Gag Order," Science News, v. 182 no. 1, 14 July 2012, p. 2.

  • Alexandra Witze (July 14, 2012). "13th century volcano mystery may be solved". ScienceNews. p. 12. Retrieved August 5, 2012.

  • Lavigne, F.; Degeai, J.-P.; Komorowski, J.-C.; Guillet, S.; Robert, V.; Lahitte, P.; Oppenheimer, C.; Stoffel, M.; Vidal, C. M.; Surono; Pratomo, I.; Wassmer, P.; Hajdas, I.; Hadmoko, D. S.; de Belizal, E. (30 September 2013). "Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia". Proceedings of the National Academy of Sciences. 110 (42): 16742–16747. doi:10.1073/pnas.1307520110. PMC 3801080Freely accessible. PMID 24082132.

  • "2002–2004: Volcanoes in Indonesia: Comparative study of island arc volcanoes between Japan and indonesia a Co-operation project between GSJ and Directorate of Volcanology and Geological Hazard Mitigation, Indonesia (DVGHM) (VSI)-Survey of Rinjani volcano (Lombok island) and caldera volcanoes in Bali". 2 February 2004. Retrieved 2010-05-09.

  • "RINJANI Lombok Island (Indonesia) 8.42°S, 116.47°E; summit elev. 3726 mi Global Vulcanism Program USGS-Smithsosian". 28 April – 4 May 2010. Retrieved 2010-05-09.

  • "Evaluasi Kegiatan G. Rinjani". Pusat Vulkanologi & Mitigasi Bencana Geologi, Volcanological Survey of Indonesia. May 4, 2010. Archived from the original on 17 July 2010. Retrieved 2010-05-11.

  • Sunda Trench (4°30' S 11°10' S 100°00' E 119°00' Accredited by: SCGN (Apr. 1987) The trench was studied in some detail in 1920's-1930's by Dutch geodesist F.A. Vening Meinesz, who made classic pendulum gravity measurements in a Dutch submarine. Shown as Java Trench in ACUF (Advisory Committee on Undersea Features Gazetteer). see also:

  • (Hamilton 1979) cited from The Geology of Indonesia/The lesser Sunda Islands-IV. Volcanic Activity and Composition, accessed 2010-05-10

  • Foden and Varne (1981) cited from The Geology of Indonesia/The lesser Sunda Islands-IV. Volcanic Activity and Composition, accessed 2010-05-10

  • Hamilton (1979) cited from The Geology of Indonesia/The lesser Sunda Islands-IV. Volcanic Activity and Composition

  • Foden, J. D. (1983). "The Petrology of The Calcalkaline Lavas of Rindjani Volcano, East Sunda Arc: a Model for Island Arc Petrogenesis" (PDF). Journal of Petrology. 24 (1): 98–130. doi:10.1093/petrology/24.1.98.

  • "Volcano erupts in Indonesia". Australian Broadcasting Commission-AsiaPacific News Center. Retrieved 2010-05-24.

  • "SI / USGS Weekly Volcanic Activity Report-RINJANI Lombok Island (Indonesia) 8.42°S, 116.47°E; summit elev. 3726 m". Global Vulcanism Program Program. 28 April – 4 May 2010. Archived from the original on 25 June 2010. Retrieved 2010-05-09.

  • "USGS Volcanic Activity Alert-Notification System". USGS Volcano Hazards Program. 29 December 2009. Retrieved 2010-05-09.

  • "Darwin VAAC – Darwin, Australia". Volcanic Ash Advisory Centers. May 2001. Retrieved 2010-05-17.

  • "SI / USGS Weekly Volcanic Activity Report-5–11 May 2010-RINJANI Lombok Island (Indonesia)". Global Volcanism Program. 5–11 May 2010. Retrieved 2010-05-17.

  • "Mount Rinjani Closed As Eruptions Intensify". Rinjani Closed As Eruptions Intensify. 3 May 2009. Retrieved 2010-05-09.

  • "Global Vulcanism Program-Rinjani Eruptive History". Global Vulcanism Program. May 2 – December 20, 2009. Retrieved 2010-05-10.

  • "Weekly Reports". Retrieved June 13, 2015.

  • "Report on Rinjani (Indonesia)". Sennert, S K (editor), Weekly Volcanic Activity Report, 28 October-3 November 2015. Smithsonian Institution and US Geological Survey. 4 November 2015. Retrieved 8 November 2015.

  • "Mount Rinjani Closed As Eruptions Intensify". GVN Bulletin-Rinjani Lesser Sunda Islands, Indonesia. January 14, 2005. Retrieved 2010-05-09.

  • "Global Vulcanism Program-Rinjani Eruptive History-Contents of Bulletin Reports, 10/1995 (BGVN 20:10) Small ash plume seen on 12 September". Global Vulcanism Program. October 1995. Retrieved 13 June 2015.

  • "Index of Monthly Reports-10/1994 (BGVN 19:10) Ash eruptions continue; cold lahar kills 30 people". Global Vulcanism Program. May 2 – Dec 20, 2009. Retrieved 2010-05-09.

  • "Rinjani-Lesser Sunda Islands, Indonesia 8.42°S, 116.47°E; summit elev. 3,726 m-During 2–5 October 2004". GVN Bulletin-Rinjani Lesser Sunda Islands, Indonesia. January 14, 2005. Retrieved 2010-05-09.

  • "Rinjani-Eruptive History". Global Vulcanism Program. Start Date 1994 Jun 3-Stop Date 1994 Nov 21. Archived from the original on 20 August 2007. Retrieved 2010-05-09. Check date values in: |date= (help)

  • "Index of Monthly Reports-05/1994 (BGVN 19:05) Ashfalls cause aviation warnings; lava flows cover summit area". Global Vulcanism Program. May 2 – Dec 20, 2009. Retrieved 2010-05-09.

  • "Eruptive Events December 1966". Global Vulcanism Program. Start Date 1966 Mar 28-Stop Date 1966 Aug 8 (?). Archived from the original on 9 October 2012. Retrieved 2010-05-09. Check date values in: |date= (help)

  • "Eruptive Events December 1944". Global Vulcanism Program. Start Date:1944 Dec 25-Stop Date:1945 Jan 1 (?). Archived from the original on 9 October 2012. Retrieved 2010-05-09. Check date values in: |date= (help)


  • "Pure elation on reaching Rinjani's summit at dawn". The Jakarta Post. March 18, 2007. Retrieved 2010-03-10.

  • Langston-Able, Nick (2007). Playing with Fire: Adventures in Indonesia. Freakash. pp. 142–170. ISBN 978-0-9553403-4-5.

  • "Main Object on Mount Rinjani".

  • "Seven Die on Mt. Rinjani". March 19, 2007. Retrieved 2010-03-10.

  • Taman Nasional Gunung Rinjani-Mount Rinjani National Park

  • Indonesian language Mount Rinjani National Park proposed to be the world geopark by M.Roil Bilad, downloaded 26 Aug, 2010

  • Khafid, Supriyantho (25 August 2010). "Mount Rinjani National Park Proposed to Become World Geopark". TempoInteraktifcom. Retrieved 2 Sep 2010.

  • Khafid, Supriyantho (25 Aug 2010). "Press Release-Mount Rinjani National Park Proposed Become World Geopark". NTB Regional Government. Retrieved 2 Sep 2010.

  • "Spesies Baru Burung Hantu Ditemukan di Lombok". February 14, 2013.

  • "Eruptive History: Rinjani". Archived from the original on 9 October 2012. Retrieved June 13, 2015.


  • "Weekly Reports: Rinjani". Retrieved June 13, 2015.


  • "Tiga Gunung Indonesia Ini Bikin Dunia Terkaget-kaget". Retrieved December 30, 2013.

  • "Terkuak: Letusan Samalas (Rinjani), Lebih Besar Dari Krakatau Bahkan Tambora!".

  • Takada et al., 2003; Nasution et al., 2003


  • External links

    Support : Creating Website | Johny Template | Mas Template
    Copyright © 2011. Xplore Wisata Go Internasional - All Rights Reserved
    Template Created by Creating Website Published by Mas Template
    Proudly powered by Blogger